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The problem of a macroscopic description of the dynamics of an elastic compo- 
site medium without using assumptions concerning the uniformity of the mean 
stress-strain states, the magnitudes of the fluctuations and the statistics of the 

medium parameters [l] is considered. Operator relationships between the mean 
stress and strain fields allow the application of operator algebra which is well 
developed in creep theory [Z]. It is shown that a quasistatic (matrix) part of the 
elastic operators, calculated by the method of replacement of variables, yields 
exact values of the elastic moduli of the composite, where the equations obtained 
are analogous to the self-consistent field equations [3 - 53. The interrelation 
between the mean dimensions of the inhomogeneities and the lengths of the in- 
cident and scattered waves is investigated for a specific correlation function. 

Analytical com~tational formulas for the elastic moduli of composite media 
have been obtained in [3 - 51 on the basis of classical solutions and the self- 
consistent field method. Exact formulas for the stochastic model have first been 
obtained in [6] on the basis of astrongly isotropic model, and on the basis of an 
equivalent singular approximation in [7]. The derivation of exact formulas re- 
quires homogeneity of the mean stress-strain states and summation of infinite 
sequences of the perturbation series (operators, in the general case) in the cases 
considered. 

The method of replacing the field variables by their polarized values turns 
out to be equivalent to a partial summation of definite kinds of Feynman dia- 
grams. It is established by adirect computation on the basis of the compatibility 
equations that the macroscopic moduli determined by the equations obtained 
are exact. A direct analytical comparison with formulas presented in 17, 8] is 

possible for two-phase composites ; numerical computations for certain poly- 
crystals of cubic symmetry yield the same values as the formulas in [6]. 
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Finding dispersion relations for composite media in the general case requires 
taking account of spatial dispersion, which is equivalent to an exact calculation 
of the eigenvalues of the polarization and elastic operators. A computation of the 

single- and two-point approximations by means of the polarization tensor results in 
summation of sequences of all single- and two-point moments of the elastic para- 

meters. Reduction of the calculation procedure to Weber-Schafheitlin integrals 
[9] imposes no constraints on the wavelength band for the correlation function se- 

lected, which will permit establishment of the discontinuous nature of the disper- 
sion formulas. We obtain the long- and shortwave asymptotics Qreglecting spatial 

dispersion) by using a plane-wave approximation of the Green’s tensor and taking 
account of the first approximation in the parameter ak < 1 and ak s 1 , respec- 

tively. 

1. The dynamics of a composite elastic unbounded medium with a harmonic depen- 

dence of the field variables on the time is described by the equations 

Lu = 0, L = aha + po02 (1.1) 

where o is the frequency, p,, is the density, h is the elastic modulus tensor, dependent 
in a random manner on the space coordinates. The connection between the stress and 
strain is determined by the relationships 

0 = he, ei,i = ‘12 (Uirj + Uj,i) (1.2) 

In the general case, we write the connection between the mean stress and strain fields 
in the operator form 

(a) = (he) = IV* (e) = S A* (5 - zr) (e(zl)) dq (1.3) 

Taking account of the relationships (1.1) - (1.3), we obtain that the mean displacement 
fields satisfy the equations 

L* (u) = 0, L* = aiv*a + pod (1.4) 

An investigation of the existence conditions for the mean fields as plane waves eikx (or 
in their expansions) results in analysis of the relations 

11 k II* (w, k) k - p,,02 Jj = 0 (1.5) 

Here HI* are the eigenvalues of the elastic operator, which when known permits finding 
the wave damping velocity and coefficients [lo], where in the general case spatial dis- 
persion due to inhomogeneity of the medium holds. The procedure to obtain the relation- 
ships between the mean stresses and strains usually results in series in powers of the ten- 
sor h. Consequently, the constraint by the scope of the correlation approximation in A 

generally assumes smallness of the elastic parameter fluctuations. 
Let us introduce an equivalent auxiliary homogeneous body with the parameters A,,, 

PO into the considerations, for which the equations of motion are 

L&J = 0, L, = a_ioa + p. co2 

We determine the elastic moduli A, of the auxiliary body from the conditions presented 

below. Subtracting the equations of motion of the homogeneous medium from (1. l),we 
obtain Lou’ = ah’&, A’ = -1 - A,,, u’ = u - u,, 

Let us pass from the differential to an equivalent integral equation 



Transferring the derivative under the integral sign and differentiating both sides of the 
relationship, we obtain an integral equation in the strain 

e = eo - s G, xx (z - z&Y(r&?(zl) dzl 

Here G,rx is the second derivative of the dynamical Green’s tensor of the auxiliary 
medium with parameters Ao, po. Representing the derivative of the Green’s tensor as 
the sum of singular and regular parts, we go over to polarized variables [S, 111 by means 
of the formulas [12] 

E = Be, y = A’B-1, B = I + @“)A (1.6) 

Here A, is the elastic modulus tensor of the homogeneous auxiliary medium, 1 is the 
unit tensor, G(s) is the singular part of the second derivative of the dynamical Green’s 

tensor, and y is the polarization tensor. 
We obtain from (1. 1) - (1.6) that the polarized strain field satisfies the integralequa- 

tion 
E = e. - s G@) (x - xl) ‘f (xl) l5.t (xl) dx~ (1.7) 

where G(R) is the regular part of the second derivative of the dynamical Green’s tensor. 

Solving (1.7) by successive iterations, we obtain an operator series in powers of the po- 
larization tensor y. Physically, the assumption of statistical homogeneity and isotropy 
of the medium is natural 

<Yijkl) = o (I.81 

Condition (1.8) assures the best convergence of the perturbation series. Taking the ave- 
rage of the series obtained while taking account of (1.8), we verify directly that (E) 
will be a solution of the integral equation 

(E) = e, + 5s GtR’ (x - 51) Qh - 3,) GW,)) h& (1.9) 

Here the operator Q is determined by a series of integral operator convolutions whose 
kernels are expressed in terms of regular parts of the second derivatives of the Green’s 

tensor and the moments of 1’. 
On the other hand, taking the average of (1.7), we can write 

(E) = e. - ss GcR) (x - x1) I’* (x1 - x9) (E (x2)) dq dx, (1. 10) 

Here the kernel r* is introduced by the relationship 

(TE) = P* (E) = \ I’* (x - 21) <E (xl)) dxl (1. 11) 

Equating the relationships (1.9) and (1. lo), we obtain 

r* (X - x1) = - Q (5 - X1) (1. 12) 

Taking account of (1.11) there follows from (1.6) 

s dxlF* (x - x1) 11 f G@) (1 dx,h* ( x1 - x2) - Ao)] (e (Xl)) = (1.. 133 

[ 1 &A* (IL: - 4 - .I01 (e (4) 

The relationships (1.13) permit the eigenvalues of the elastic operator fl* (0, k> to be 



expressed in terms of the eigenvalues D* (CO, k) of the polarization operator P* 

17* = A0 + M-'II*, M = I - G(")D* (1.14) 

Applying the inverse Fourier transform to (1.14), we obtain an expression for the kernel 
of the elastic operator iI* (X - x1) in terms of ilO and the kernel 1‘* (x - x1) of 
the polarization operator 

A* (0, p} = ho + (2n)-3 j c% eih’P+Wi (w, k) P (o, k) (1.15) 

Here f”l, is the exact value of the static elastic moduli determined from (1.8). 

0.5 

Fig. 1 

In fact, by performing analogous calcu- 
lations on the basis of the dynamical com- 

patibility equations in the stresses, we ob- 
tain an equation in AO from the condition 

analogous to (1.8) for the stress polariza- 
tion tensor, which agrees with the equations 

for Ao. obtained on the basis of the equa- 
tions of motion in displacements. The se- 

cond term in (1.14) and (1.15) is due, in 
the general case, to the operator nature 

of the connection between the mean stress 
V 

and strain fields in inhomogeneous media. 

2, Let us examine the relationships 
which A, satisfy for single-phase polycrystals with cubic symmetry. Taking account of 
(1. 6) it follows from (1.8) 

8G3, + G2, (9Ko -i_ 4pv) - 36,~ fKo + 4pv) - 6K,p2v = 0 (2.1) 

K,, = (K) = 2c123+ ‘rl, v= Cl1 - CF.3 
7 CL = 244 c44 

Here Go, K, are the macroscopic shear and volume elastic moduli, and v is the ani- 

sotropy parameter, Equation (2.1) agrees with the Krijner equation [3, 41 obtained by a 
consistent method and determines the exact value of G, since we obtain the same equa- 
tion when using the kuss scheme. A graph of the dependence x = G,p-l on v is re- 
presented in Fig. 1 for different values of Y = ~&-‘- 

Let us consider a two-component elastic composite with isotropic components. In this 
case the relationships (1.8) result in the equations 

8G3, - Go2 f20 (G) - 9K, - 12 (G, + Gz)l - (2.2) 
3G015K, (G) - 2K,Sg + 4G,GJ - GK,G,G2; = 0, (K, - 
(K>H4/aGo + S,> + & (0) := 0 

which can also be converted into 

Go = (G) - m:+‘; , Ko = (K) - a,320(; sk (2.3) 

m 
0 

= Go (GXo + 8Go; 
6(&-i-3&) ' 

& = Clf2 + C2fl 

Cl + c-2 =L 1,‘ R-j (0) = CICZ (fl - fz)” 



Equations in the form of (2.2) have been obtained [5] on the basis of the self-consistent 

field method, and in the form of (2.3) in [8]. The relationships (2.3) and (2.2) deter- 
mine the exact values of the elastic moduli, as is verified by a direct computation on 
the basis of the compatibility equations. 

Fig. 2 Fig. 3 

Shown in Fig, 2 is the dependence of x = G&-r, on the concentration c = cr by 
solid lines for a = G&PI1 = 0.5, fi = K&-r, = 0.1 and by dashed lines for 
o == 0.5, p = 1.7. The dependence of Y = KoGwl, on c = c1 is shown in Fig. 3 
for the same values of. a, #$, 6. Values of the parameter 6 = K2G-lI equal to 

0.1, 0.9, 1.7 correspond to curves 1-3 , 
Let US note that the usual assumptions about the homogeneity of the mean state of 

stress-strain were not used in obtaining (1.8), (2. l), (2.2), (2.3) and no assumption was 
introduced relative to the statistics of the field of elastic coefficients except the usual 
hypotheses of statistical homogenei~ and isotropy. 

3, The discontinuous nature of the dispersion relations for wavelengths on the order 
of the characteristic scales of the structure in a phenomenological model will hold if 
the eigenvalues of the elastic operator n* (0, k) in (1.5) depend on k nonuniquely. 
The exact expression for D* (w, k) in (1.14) is evaluated for the correlation function 

(y (sr)y (a+,)) = R (0) up-l sin pn-’ (a is the radius of correlation) by means of 
the formula 

L)* (w, k) = 5 lY* (0, p) eeikp dp (3.1) 

Going over to a spherical coordinate system in (3. I), we integrate with respect to the 
angles. We convert the expressions obtained to Weber-Schafheitlin integrals [9], whose 
values depend on relationships between a and 0. 

In the case of strong anisotropy of the field :I for riT%; (0, p) by means of (1.12) 

in the correlation approximation in y and for D*Q~~ (0, k) by means of (3. l), we ob- 
tain expressions in the form of isotropic tensors 

Kijrr (Z) = RI (I Z I) SijS&r + K?, (I 7 1) (M&i + Gil8SJ + 

K3 (1 z f) (b,jekq + G,,e,ejl + & (1 z 1) (Q%% + heReZ -I- 
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In this case expressions dependent on six functions are obtained for A* (p) and N* (w, 
k) by means of (1.15) and (1.16). The strong isotropy of N* (0, k) (N*a = N4* = 
N*, = Ns* = 0) corresponds to the strong isotropy of D* (0, k) (D*, = D,* = 
D*, = 0). In the general case we can write (J, (z) is the Bessel function) 

s(3) 
m {jJu[(f+k,) P]JP@P)P~~P}+ 

0 

~~‘{~Jv[(f+k,) p]JdWpW} 7 m = 1, ., 5 
0 

Here s,@) {qi}O are sums of integrals of the type q1 which depend on the relationship 
between k and l/a zh k, (a = I, t). Let us introduce a notation for the integrals: 
S,,,(i) = s,,,-(i) for k < l/a -J= k,; S,.,,(i) = S,@) for k = l/a f k,; S,(i) = 
S,+(i) for l/a f ka < k. We then obtain the following cases for Pm (0, k): 

1”. 1/a-kk,>O. 

1) k<i/a-kk, 

2) k = l/a-k, 

3) l/a-kk,<k<l/a-kkI 

4) k=l/a-kk, D* = S+(l) + S”(2) + S-(3' + S-$4' 
m m m m 

5) lla-k,<k<lla+kl 
D* = S+(l) + S+(2) + S-(3) + &'-(4) 

6) k=l/a+kl D; = S;,, + $2, + 853) f S5) 

7) ~/a+kr<k<1/a+h 
D:,=S+&"+$")+~j-)+s--$) 

8) k=l/a+k, 0; = $1) + S+$) + x23) + 824' 

9) l/ai-kt<k 
@_S+$'+ ,;2) +S+$"'+ S$") 

2". l,‘a - k, < 0. Then we take the value z = i& - 4Ja > 0 as the argument 
in the expression 

v22 / n J*q, (4 

in the formulas for Sm(l) , and we take the sign before the J+l,, (2) opposite to the sign 

in the case lo (2 = l/a - k, > 0). Changes in the formulas will occur only for the 
subcases (1) - (4). 

3”. 1 I a - k, < 0. Analogously to case 2” we change the argument and sign in 
the expressions for J-fl,s (z) and we introduce corresponding changes in formulas (l)- 

(4). 
The remaining expressions for D,* are analogous to case 1’. 
The values for S,,,(i) evaluated by means of the Weber Schafheitlin formulas [9] 
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areexpressed by the hypergeometric function F (a, fl, y; z). The argument z in 
the expressions for s,-ti) equals k (1 la f k,)-l, and correspondingly (1 / a f 
k,) k-l for S,+(i) , while ambiguity of D,* (0, k) holds for z = 1 . Substituting 
D,* (0, k) into (1. 14) and (1.15). we determine the exact dispersion relations from 
which the wave velocity and damping can.be found [lo]. 

Neglecting spatial dispersion, using the plane-wave approximation of the Green’s ten- 
sor (the scattered field is studied far from the scattering elements) for long ak < 1 
and short a/i>> 1. waves, and assuming the smallness of the fluctuations of the elastic 
parameters of the medium (A, = (A), n* = A,, + o*), we obtain expressions 
analogous to those in [lo]. 

The authors are grateful to Iu. N. Rabotnov for valuable and useful remarks made du- 
ring discussions of the research. 
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